Oxidation of Thiols and Disulphides with the Ammoniumyl Radical-cation, *'NH₃: an E.S.R. Investigation

By Bruce C. Gilbert • and Paul R. Marriott, Department of Chemistry, University of York, Heslington, York YO1 5DD

E.s.r. spectroscopy has been employed to demonstrate that the reaction of +*NH₃ (from Ti^{III} and +NH₃OH) with thiols (RSH) proceeds *via* the initial formation of thiyl radicals (RS•); these react further to give disulphides as well as oxygen-containing radicals RSO• and RSO₂•, formed by a series of one-electron oxidation reactions, and both SO₂-• and SO₃-• (which arise *via* sulphur dioxide formed in the decomposition of RSO₂•). Reaction with disulphides, which leads to the detection of sulphinyl radicals and disulphide-conjugated radicals, is thought to involve both radical-cations (RSSR+•) and ammoniumyl adducts [RS(NH₃)SR] whose further reactions have been described.

THE action of thiols as radioprotectors ¹ and disulphides as antioxidants ² has prompted considerable interest in the reactions of radicals with these compounds and in the properties of the radicals derived from them. Techniques employed in studies of these systems include direct radiolysis and product studies,³ pulse radiolysis in conjunction with conductometric and optical detection systems,⁴ and e.s.r. spectroscopy.⁵

The usefulness of e.s.r. spectroscopy is demonstrated by the characterisation of a variety of radicals of different structure (e.g. RS, by trapping, RSO, and RSO₂) formed by a complex series of reactions during the oxidation of thiols and disulphides with OH (from the Ti¹¹¹-H₂O₂ couple). It was proposed ⁵ that alkanesulphinyl radicals (RSO) are formed both via the decomposition of OH-disulphide adducts [RS(OH)SR] and by oxidation of sulphenic acids (RSOH) formed by reaction of RS, with H₂O₂; alkanesulphonyl radicals (RSO₂) are evidently derived from RSO via oxidation with H₂O₂. Some of the important processes involved are shown in reactions (1)—(10).

$$RSH + HO \rightarrow RS + H_2O$$
(1)

$$RS \cdot + RS \cdot \longrightarrow RSSR$$
 (2)

$$RS \cdot + H_aO_a \longrightarrow RSOH + HO \cdot$$
 (3)

$$RSOH + HO \rightarrow RSO + H_2O$$
(4)

$$RSSR + HO \longrightarrow RSSR$$
(5)

$$\left\| \begin{array}{c} \mathsf{OH} \\ \mathsf{RSSR} \\ \mathsf{RSSR} \\ \mathsf{FSSR} \\ \mathsf{RSOH} \\ \mathsf{RSOH}$$

$$\bigcup \longrightarrow \bigcup CSSR + H^+ + HO^- (8)$$

$$RSO \cdot + H_2O_2 \longrightarrow RSO_2H + HO \cdot$$
 (9)

$$RSO_2H + HO \rightarrow RSO_2 + H_2O$$
(10)

We have previously described the use of e.s.r. spectroscopy in the study of the reactions of ⁺⁻NH₃, generated from the Ti^{III}⁺NH₃OH redox couple [reaction (11)]; ^{6.7} this radical reacts *via* hydrogen abstraction from activated C-H bonds in, *e.g.* alcohols,⁶ and *via* sulphur-centred radical-adducts with sulphides and sulphoxides.⁷ We here describe the results of an investigation of the reaction of $^{+}$ NH₃ with thiols and disulphides.

$$Ti^{III} + {}^{+}NH_{3}OH \longrightarrow Ti^{IV} + OH^{-} + {}^{+}NH_{3}$$
 (11)

RESULTS AND DISCUSSION

Reactions of $^{+}$ NH₃ with Thiols and Disulphides.—The reactions of $^{+}$ NH₃ with a selection of thiols and disulphides were studied at pH *ca.* 1.5 using a three-way flow-system of mixing time *ca.* 0.1 s. The three streams contained, respectively, titanium(III) chloride solution, hydroxylamine hydrochloride, and the substrate (for details, see the Experimental section); studies were carried out over a wide range of substrate concentrations and were also repeated using hydrogen peroxide, instead of hydroxylamine hydrochloride, in order to examine the effect of variations in substrate concentration of corresponding reactions of \cdot OH.

It was found that, depending on the structure and the concentration of the thiol or disulphide, a variety of different radicals could be detected. These included radicals of the type RSO and $\text{RSO}_2^{\cdot,5}$ alkyl radicals, disulphide-conjugated radicals,⁵ and also ⁸ SO₂⁻⁻ and SO₃⁻⁻. Table 1 lists the e.s.r. parameters of these radicals and indicates the substrate concentration ranges over which signals could be observed. The findings are described in more detail in the sequel.

(a) Cysteine and Cystine.—In the reaction of $^{+\cdot}NH_3$ with L-cysteine, HO₂CCH(NH₃⁺)CH₂SH, the only radical detected for substrate concentrations >10⁻³ mol dm⁻³ was the sulphinyl radical ⁵ HO₂CCH(NH₃⁺)CH₂SO. Reduction in the cysteine concentration below this resulted in the diminution of this signal and the detection of SO₃⁻⁻ and ⁹ \cdot CH₂CH(NH₃⁺)CO₂H. The sulphinyl radical was also detected from the disulphide L-cystine, although the signal was generally weaker than that from the thiol under similar conditions; no extra signals appeared on dilution of this substrate and we conclude at this stage that the formation of SO₃⁻⁻ and \cdot CH₂CH-(NH₃⁺)CO₂H from cysteine does not involve *in situ* disulphide formation.

(b) 2-Mercaptoethanoic Acid and 2,2'-Dithiodiethanoic Acid.—In contrast to the results obtained for cysteine, the reaction of $^{+1}NH_3$ with HO₂CCH₂SH at concentrations greater than ca. 2 × 10⁻³ mol dm⁻³ led to the

detection of SO_2^{--} as well as a weak spectrum from $HO_2CCH_2SSCHCO_2H.^5$ A weak, unassigned signal with a(1H) 1.55 mT, g 2.0066 was also detected. At lower concentrations of the substrate, however, only SO_3^{--} and 5,10 ·CH₂SSCH₂CO₂H could be detected. The disulphide-conjugated radical ·CH₂SSCH₂CO₂H was also detected over a wide concentration range from the reaction of the disulphide $HO_2CCH_2SSCH_2CO_2H$ (in addition to a weak signal from SO_2^{--}).

(c) 2-Mercaptopropanoic Acid.—The behaviour of $HO_2CCHMeSH$ was analogous to that of 2-mercaptoethanoic acid. Thus reaction at higher concentration $(>10^{-2} \text{ mol dm}^{-3})$ led to the detection of SO_2^{-1} and ⁵ trations, HOCH₂CH₂SO₂ were detected (with a maximum concentration of the latter for [HOCH₂CH₂SH] 7×10^{-4} mol dm⁻³). There were no detectable signals from the corresponding disulphide. Reaction of + NH₃ with + NH₃CH₂CH₂SH led simply to the detection of a signal assigned to ⁵ + NH₃CH₂CH₂SO over a wide range of substrate concentration; its intensity was essentially independent of substrate concentration down to [+NH₃-CH₂CH₂SH] 5×10^{-4} mol dm⁻³, below which further reductions in thiol concentration simply resulted in a decrease of intensity.

Trapping Experiments.—The detection of disulphidederived radicals in the reaction of thiols and $^+$ ·NH₃

Table 1

Radicals characterized during the reaction of $'^{+}NH_{3}$ with thiols and disulphides and their dependence upon substrate concentration

			E.s	ers ª				
S	ubstrate	e	<i>a</i> (α-H)	a(β-H)	a(other)		ΔH	Range of [S] ₀ /mol dm ⁻³
R	(S)	Radical	mT	mT	mT	g	mT	for radical detection
		(HO,CCH(NH,+)CH,SO.		0.93(2H)		2.0107	0.22	$>$ $1.3~ imes~10^{-4}$ b
HO ₂ CCH(NH ₃ ⁺)-	RSH	{SO3		. ,		2.0032	0.10	$5.3 imes10^{-4}$ $1.3 imes10^{-4}$
CH ₂		$HO_2CCH(NH_3^+)CH_2^{\bullet}$	2.25(2H)	2.63(1H)	0.38(1N)	2.0028	0.10	$3 imes10^{-4}$ — $1.3 imes10^{-4}$
	RSSR	HO ₂ CCH(NH ₃ ⁺)CH ₂ SO·	. ,	0.93(2H)	•	2.0107	0.22	ca. 3×10^{-4} $\times 10^{-5}$ b
		(HO ₂ CCHSSCH ₂ CO ₂ H	1.55(1H)			2.0056	0.10	$>$ ca. 2×10^{-3}
но ссн	DCH	JSO ₂				2.0057	0.10	$>$ ca. $3 imes 10^{-3}$
$\Pi O_2 C C \Pi_2$	K311) SO ₃ •				2.0032	0.10	$1 imes 10^{-3}$ —6 $ imes 10^{-4}$ b
		└HO₂CCH₂SSCH₂•	1.70(2H)			2.0040	0.05	$1 imes10^{-3}$ — $6 imes10^{-4}$ b
		∫HO ₂ CCH ₂ SSCH ₂ ·	1.70(2H)			2.0040	0.05	$>$ $1.4 imes10^{-4}$
	RSSR	{SO₃-•				2.0032	0.10	$>$ $1.8 imes10^{-2}$ and
		($1.4 imes 10^{-4}$ 4 $ imes 10^{-5}$
HO ₂ CCH(Me)		$HO_2CC(Me)SSCH(Me)CO_2H$		1.78(3H)		2.0053	0.08	$> ca. 1 \times 10^{-2}$
	RSH ·	$\int SO_2^{-1}$				2.0057	0.10	$>ca.$ 4 \times 10 ⁻²
		SO ₃ -•				2.0032	0.10	$< 5 imes 10^{-4}$
		CHO ₂ CH(Me)SSCHMe	1.80(1H)	2.20(3H)		2.0037	0.10	$<5 \times 10^{-4}$
HO,CCH,CH,	RSH	SO_2^{-1}		0.105/011	0.07(0.TT)	2.0057	0.10	
	DOOD	(HO ₂ CCH ₂ CH ₂ SO ₂ ·		0.125(2H)	$0.25(2\gamma H)$	2.0050	.0.02	$4 \times 10^{3} - 8 \times 10^{3}$
	RSSR	C (20)					0.10	$[1 \times 10^{-3} - 1 \times 10^{-5}]^{*}$
HOCH ₂ CH ₂	RSH	SO ₂ -•			0 40(D II)	2.0057	0.10	<i>d</i>
	DOOD	(HOCH ₂ CH ₂ SO ₂ ·			$0.40(2\gamma H)$	2.0053	0.05	$1.2 \times 10^{-2} - 7 \times 10^{-5}$
	RSSR				0.00(011)	0.0100	0.9	$[1.1 \times 10^{2} - 2 \times 10^{6}]^{\circ}$
NH ₃ ⁺ CH ₂ CH ₂	KSH	NH ₃ +CH ₂ CH ₂ SO·			0.93(2H)	2.0109	0.3	$>4.5 \times 10$ *

^a Splittings ± 0.005 mT; $g \pm 0.0001$; $\Delta H \pm 0.02$ mT. ^b Lowest substrate concentration studied; radical still detected at this concentration. ^c No radicals detected. ^d SO₂⁻⁻ detected for [RSH] *ca*. 0.1M. ^e Range of concentrations studied.

•CMe(CO₂H)SSCHMeCO₂H, and dilution led to the disappearance of these signals and the appearance of those from SO₃^{-•} and •CHMeSSCHMeCO₂H. In addition, an unidentified singlet (g 2.0108, ΔH 0.1 mT) was detected at intermediate thiol concentrations. The corresponding disulphide was not studied.

(d) 3-Mercaptopropanoic Acid and 3,3'-Dithiodipropanoic Acid.—In contrast with the behaviour of the thiols mentioned previously, reaction of HO₂CCH₂-CH₂SH led to the detection of SO₂⁻⁻ (at high substrate concentrations) and the sulphonyl radical ⁵ HO₂CCH₂-CH₂SO₂· for [HO₂CCH₂CH₂SH] < 4 × 10⁻³ mol dm⁻³. Further dilution led to an increase in the intensity of this signal, giving a maximum concentration at [HO₂CCH₂-CH₂SH] ca. 4 × 10⁻⁴ mol dm⁻³. No signals were detected from the corresponding disulphides over a range of concentrations (see Table 1).

(e) 2-Mercaptoethanol and 2-Mercaptoethylamine.— Similar results to those described for 3-mercaptopropanoic acid were obtained for 2-mercaptoethanol; thus at high concentrations SO_2^{-1} and, at lower substrate concensuggests that, as with \cdot OH, oxidation takes place to give thiyl radicals (RS·) which then dimerize to give disulphides, which then undergo further reaction.* There are strong grounds for believing that alkylthiyl radicals (like alkoxyl radicals) will not be detectable by e.s.r. spectroscopy in fluid solution,^{5,11} and we have hence carried out the thiol oxidation reactions in the presence of butenedioic acid as a radical trap. In each case a strong e.s.r. signal attributed to the radical adduct ^{5,12} ·CH(CO₂H)CH(CO₂H)SR was detected (see Table 2) and all other signals were removed. We conclude that thiyl radicals are indeed formed in the first step and also that all radicals directly detected in the absence of the trap derive from further reactions of RS·.

The reactions of \cdot OH with thiols and disulphides. The results obtained for $^{+}\cdot$ NH₃ and thiols and disulphides show a general similarity to those obtained ⁵ for \cdot OH (where sulphinyl, sulphonyl, and disulphide-conjugated radicals could also be detected). Since data for the latter

*An alternative route to disulphides involves the rapid reaction of RS• with RSH and oxidation of the resulting adduct RSS(H)R.

system refer ⁵ to a restricted range of substrate concentrations, we have also extended this range in order to facilitate a direct comparison of the \cdot OH and $^{+}\cdot$ NH₃ systems.

The reaction of cysteine with ·OH led to the detection of HO₂CCH(NH₃⁺)CH₂SO· (for [thiol] > 4 × 10⁻⁴ mol dm⁻³) and ·CH₂CH(NH₃⁺)CO₂H (in the concentration range 10⁻³ – 4 × 10⁻⁴ mol dm⁻³); unlike the ⁺·NH₃ reaction, no SO₃⁻⁻ was detected. S₁ (the Ti^{IV}-HO₂· complex ¹³ with g 2.0134) was the only species detected for substrate concentrations below 4 × 10⁻⁴ mol dm⁻³.* Reaction of the corresponding disulphide also led to the detection of HO₂CCH(NH₃⁺)CH₂SO· (as with ⁺·NH₃) and S₁.

The reaction of \cdot OH with 2-mercaptoethanoic acid showed significant differences compared with the reaction of $+\cdot$ NH₃. Thus although for [thiol] 0.1 mol

TABLE 2

E.s.r. parameters of radicals of the type RSCH(CO₂H)-CHCO₂H formed during the reaction of thiols (RSH) with NH_{3}^{++} in the presence of butenedioic acid

Hyperfine	solittings.	mT (
пурегине	sphrungs	IIII .

	~ 1	· · · · ·	•		
R	a(1H)	a(1H)	a(2H)	g *	
HO,CCH(NH,+)CH,	2.00	0.84	0.11	2.0034	
HO ₂ CCH ₂	2.00	0.91	0.08	2.0035	
HO ₂ C(Me)CH	2.01	0.89	С	2.0032	
HO ₂ CCH ₂ CH ₂	2.00	0.90	0.11	2.0033	
HOCH ₂ CH ₂	1.98	0.85	0.11	2.0034	
NH ₃ +CH ₂ CH ₂	1.98	0.85	0.10	2.0033	
4 1 0 00 F T	0.0001		1:44 !		

* $\pm 0.005 \text{ mT}$. ± 0.0001 . * No γ -proton splitting resolved.

dm⁻³, for example, ·CH(CO₂H)SSCH₂CO₂H was detected, a broad signal attributed to $HO_2CCH_2SO \cdot [a(2H) 0.95]$ mT, g 2.0104] was also observed; over the thiol concentration range 5 $\,\times\,$ 10⁻²—2.5 $\,\times\,$ 10⁻³ mol dm⁻³ this was the only detectable radical. Further reduction in the thiol concentration led to a spectrum analysed in terms of a mixture of signals from S₁, •CH₂SSCH₂CO₂H, and also ⁹ ·CH₂CO₂H. Subsequent dilutions resulted in a decrease in the concentration of carbon-centred radicals so that these were undetectable by [HO₂CCH₂SH] ca. 2×10^{-4} mol dm⁻³ (when S_1 remained). Signals from the sulphinyl radical HO₂CCH₂SO, but not SO₃⁻⁻, were clearly identified during the reaction of $\cdot OH$ with the corresponding disulphide. Signals from S_1 and ·CH₂CO₂H were also detected at [HO₂CCH₂SSCH₂CO₂H] ca. 10^{-3} mol dm⁻³, while a further two-fold dilution led in addition to the detection of •CH₂SSCH₂CO₂H.

2-Mercaptopropanoic acid behaved in a manner similar to 2-mercaptoethanoic acid in that at $[HO_2CCH(Me)SH]_0$ ca. 10⁻² mol dm⁻³ HO_2CCH(Me)SO^{•5} was detected (accompanied by an unidentified singlet of linewidth 0.15 mT and g 2.0104). A reduction in thiol concentration resulted in a decrease in the intensities of both spectra and in the detection of ⁵ •CHMeCO₂H.

No radicals were detected from the reaction of •OH with 3-mercaptopropanoic acid at a thiol concentration

of 5×10^{-2} mol dm⁻³; however a gradual dilution of the thiol (to 3×10^{-3} mol dm⁻³) resulted in the detection of both S₁ and HO₂CCH₂CH₂SO₂. The concentration of both species was increased by further dilution, that of the sulphonyl radical attaining a maximum value at [HO₂CCH₂CH₂SH]₀ ca. 5×10^{-4} mol dm⁻³. Reaction of a saturated solution of the corresponding disulphide led, in contrast to the ⁺⁺NH₃ system (where no radicals were detected), to the detection of S₁, HO₂CCH₂CH₂SO₂, and ⁵ HO₂CCH₂CH₂SO₂. Dilution of the disulphide resulted in a reduction in the concentration of both sulphur-containing radicals.

Although no radicals were detected from the reaction of \cdot OH with 2-mercaptoethanol in the range 0.1—0.02 mol dm⁻³, a weak spectrum due to HOCH₂CH₂SO₂· was detected at [HOCH₂CH₂SH]₀ 10⁻² mol dm⁻³. Its intensity increased with reduction in thiol concentration, reaching a maximum at [HOCH₂CH₂SH]₀ ca. 7 × 10⁻⁴ mol dm⁻³. The reaction of \cdot OH with the disulphide HOCH₂CH₂SSCH₂CH₂OH (0.01 mol dm⁻³) led to the detection of ⁵ HOCH₂CH₂SO·; a reduction in the disulphide concentration led to its replacement by the signal of HOCH₂CH₂SO₂·, the latter being formed exclusively at [HOCH₂CH₂SSCH₂CH₂OH]₀ 7 × 10⁻⁴ mol dm⁻³.

Finally, the reaction of $\rm NH_3^+CH_2CH_2SH$ with $\cdot OH$ led to the detection of $\rm NH_3^+CH_2CH_2SO_{\cdot}$, as was also observed with $^+\cdot \rm NH_3$. The spectrum's intensity was essentially independent of substrate concentration over the range $0.03-4 \times 10^{-3}$ mol dm⁻³, but decreased from $\rm [NH_3^+CH_2CH_2SH]_0 < 3 \times 10^{-3}$ mol dm⁻³.

The reactions of the \cdot OH and $^{+}\cdot$ NH₃ systems clearly have features in common and in both cases there is evidence for the *in situ* formation of disulphides from thiols. However, we note that the two systems differ as follows.

(i) SO_2^{-*} and SO_3^{-*} (absent in the reactions of $\cdot OH$) are detected during the reactions of NH_3^{+*} with several thiols and with 2,2'-dithiodiethanoic acid.

(ii) No radicals could be detected from the reactions of $\rm NH_3^{+*}$ with 3,3'-dithiodipropanoic acid or 2,2'-dithiodiethanol, whereas sulphinyl and sulphonyl radicals were detected from the reaction of these substrates with •OH.

(iii) The sulphinyl radicals detected during the reactions of \cdot OH with 2-mercaptopropanoic acid and 2-mercaptoethanoic acid (and its corresponding disulphide) were absent during the analogous reactions of NH₃⁺⁺, as were the carbon-centred radicals \cdot CHMeCO₂H and \cdot CH₂CO₂H.

(iv) The disulphide-conjugated radical $^{\rm C}\text{CH}_2\text{SSCH}_2$ -CO₂H was detected during the reaction of NH₃⁺⁺ with HO₂CCH₂SSCH₂CO₂H over a wide range of substrate concentrations whereas this radical could only be detected from the analogous $^{\rm O}\text{H}$ system over a narrow concentration range (5 × 10⁻³—ca. 2 × 10⁻⁴ mol dm⁻³).

In the following section, mechanisms are proposed for the reaction of $^{+}$ ·NH₃ with thiols and disulphides which account not only for the formation of the oxygenated radicals RSO, RSO₂, SO₂⁻⁻, and SO₃⁻⁻ but also for the

^{*} In general, for reactions of disulphides and thiols with •OH, only S₁ was detected at substrate concentrations below ca. $2 \times 10^{-4} \text{ mol dm}^{-3}$.

similarities and differences in the behaviour of $^{+}$ NH₃ and \cdot OH.

Mechanisms of the Reactions.—(a) The reactions of ⁺NH₃ with thiols. As indicated by the results of trapping experiments, the reactions of "NH₃ with thiols result in the formation of thivl radicals, presumably via S-H abstraction. The ready dimerization of the thiyl radicals will result in the in situ formation of disulphides 14 which can then react further to give, for example, disulphide-conjugated radicals (as discussed in the next section). Under experimental conditions where the ammoniumyl cation-radical is not completely scavenged by the thiol, the excess of +'NH₃ presumably reacts with the products of the "NH3-thiol reaction (*i.e.* RS· and RSSR). In particular, the detection of oxygenated radicals evidently not formed via the disulphide (e.g. the sulphonyl radicals from HO₂CCH₂-CH₂SH and HOCH₂CH₂SH, and SO₂^{-•} and SO₃^{-•}) is indicative of a direct reaction between $^+$ ·NH₃ and RS•.

The formation of RSO_2 (R = HO_2CCH_2CH_2 or HOCH₂CH₂) from the appropriate thiols with ⁺NH₃ has an interesting parallel in the reaction of Ce^{IV} with, for example, HOCH₂CH₂SH; ⁵ the detection of HOCH₂- CH_2SO_2 · during the latter reaction was rationalized in terms of the oxidation of a first-formed thiyl radical by Ce^{IV} to a sulphenic acid, and thence to the (detectable) sulphinyl radical RSO, which is then further oxidized by Ce^{IV} to a sulphinic acid and hence RSO₂. (we have previously shown ⁷ that ⁺·NH₃ readily effects the last of these stages). A study of aliphatic sulphonyl radicals has shown that they exist in solution in equilibrium with the corresponding alkyl radical and SO_2 [reaction (12)], with the position of equilibrium markedly dependent upon the structure of the alkyl group; the equilibrium lies well over to the left for unsubstituted primary alkyl radicals but for $R = CH_2CO_2H$, for example, dissociation is favoured.15 Thus if sulphonyl radicals are formed from ⁺·NH₃ and the thiols, other than HO₂CCH₂CH₂SH and HOCH₂CH₂SH, they would be expected to decompose readily to give SO_2 and alkyl radicals (which were detected from cysteine and in the corresponding reactions of HO· with certain substrates).

$$RSO_2 \rightarrow R \rightarrow SO_2$$
 (12)

Reaction (12) can also provide the source of $SO_2^{-\cdot}$ and $SO_3^{-\cdot}$. Thus, as has been noted,⁸ these radicals are formed by reduction (with Ti^{III}) or oxidation (with \cdot OH, \cdot NH₂, or Ce^{IV}), respectively, of sulphite ions, which would be derived under our conditions if SO₂ is indeed formed [at pH *ca.* 1.5, SO₂ and HOSO₂⁻ are the predominant forms of sulphurous acid ¹⁶ (pK_a for 'H₂SO₃' and HSO₃⁻ 1.8 and 7.2, respectively ¹⁷)]. We confirmed that oxidation of sulphite (10⁻² mol dm⁻³) under our conditions led to the formation of SO₃⁻⁻ (g 2.0032), *via* reaction (13), and when Ti^{III} alone (9 mmol dm⁻³) was flowed against sodium sulphite, SO₂⁻⁻, presumably formed *via* reaction (14), was detected.

The fact that SO_2^{-} is only detected at high thiol concentrations (*i.e.* when $^+NH_3$ is effectively scavenged

by the substrate) is consistent with the higher reactivity of sulphite ions with $^{+}NH_3$ compared with their reactivity towards Ti^{III} (cf. ref. 8) while the absence of SO₃⁻⁻ during the oxidations with $\cdot OH$ is consistent with a lower reactivity of the latter, compared with $^{+}NH_3$, towards HOSO₂⁻⁻. SO₃⁻⁻ is evidently not detected from

$$NH_{3}^{++} + HOSO_{2}^{-} \longrightarrow {}^{+}NH_{4} + SO_{3}^{-+}$$
(13)
$$Ti^{111} + SO_{2} \longrightarrow Ti^{1V} + SO_{2}^{-+}$$
(14)
(or HOSO_{2}^{-}) (or HO^{-} + SO_{2}^{-+}) (14)

 $HO_2CCH_2CH_2SH$ and $HOCH_2CH_2SH$ because the relatively stable sulphonyl radicals from these substrates give rise to a low concentration of SO₂, in contrast to the significant desulphonylation of the sulphonyl radicals from $HO_2CCHRSH$ (R = H or Me) and $HO_2CCH-(NH_3^+)CH_2SH$ which give SO_3^{--} (via SO_2) and, for the latter, a detectable concentration of the corresponding alkyl radical.

The similarity of the behaviour of Ce^{IV} and + NH₃ prompts the proposal of a mechanism for the latter involving one-electron oxidation and hydrogen-abstraction reactions [reactions (15)—(19)]. It is significant that for cysteine and +NH₃CH₂CH₂SH the sulphinyl radical itself is directly detectable [though these radicals could result to some extent via pathways involving the corresponding disulphides, since cysteine gives a signal (of reduced intensity) from the sulphinyl radical]. The detection of these radicals even at low thiol concentrations (when + NH₃ is not completely scavenged by the thiol), suggests that these sulphinyl radicals are relatively resistant to further oxidation, possibly as a result of electrostatic repulsion between +'NH₃ and the positively charged amino-substituents. The overall scheme shown in reactions (15)—(19) resembles that for \cdot OH, but with one-electron oxidation of intermediate radicals by ⁺·NH₃ rather than ' molecular ' oxidation with hydrogen peroxide.*

$$RSH + {}^{+}NH_3 \longrightarrow RS + {}^{+}NH_4$$
(15)

$$RS' + "NH_3 \xrightarrow{H_3O} RSOH + "NH_4 \quad (16)$$

$$RSOH + {}^{+} NH_3 \longrightarrow RSO + {}^{+}NH_4$$
(17)

$$RSO + * NH_3 \xrightarrow{H_2O} RSO_2H + NH_4 \quad (18)$$

$$RSO_2H + {}^{+} NH_3 \longrightarrow RSO_2 + {}^{+}NH_4$$
(19)

(b) The reaction of $^{+}$ ·NH₃ with disulphides. By analogy with the mechanisms proposed for the reactions of $^{+}$ ·NH₃ with sulphides ⁷ and for the reactions of $^{-}$ OH with sulphides ⁷ and disulphides 4,5 it seems likely that the reaction of $^{+}$ ·NH₃ with disulphides involves electron transfer (to give RSSR⁺⁺, which is not detectable by e.s.r. in fluid solution) or addition at sulphur [to give RŠ(NH₃)SR], or both. The reaction with $^{-}$ OH involves parallel electron-transfer ⁴ and addition, ⁵ to give RSSR⁺⁺ and RŠ(OH)SR, respectively; formation of sulphinyl

A contribution from one-electron oxidation by $\rm RSSR^{+}$ cannot be ruled out (see later).

radicals is thought mainly to involve direct fragmentation of the latter ⁵ (though fragmentation to give RS· is also likely). Pulse-radiolytic studies ⁴ of the kinetics of the decay of RSSR⁺⁺ (R = Me, Et, Pr¹, and Bu^t) show that this is second order in [RSSR]⁺⁺ (presumably *via* bimolecular disproportionation) and that hydration is relatively slow; this radical is also shown ⁴ to be an effective one-electron oxidising agent (*e.g.* with Fe^{II}, $k = 1.5 \times 10^{10}$ dm³ mol⁻¹ s⁻¹). Disulphide-conjugated radicals, *e.g.* ·CH₂SSCH₂CO₂H from HO₂CCH₂SSCH₂- comparable conditions to give signals from \cdot CH₂SSCH₂-CO₂H; this reaction involves one-electron transfer and indicates that the appropriate radical-cation does indeed decarboxylate (the detection of SO₃⁻⁻ in low concentrations also suggests that some thiyl radicals are formed, which lead to SO₃⁻⁻ via a series of one-electron oxidations). As in the reactions of 2,2'-dithioethanol and 3,3'-dithiopropanoic acid with ⁺·NH₃, reaction of these substrates with Ce^{IV} gave no detectable signals: this is thought to reflect, as with 2,2'-dithiodiethanoic

$$HO_{2}CCH_{2}S \xrightarrow{+}{} SCH_{2}CO_{2}H \xrightarrow{-H^{+}}{} HO_{2}CCH_{2}SSCH_{2} + CO_{2}$$
(23)
$$HO_{2}CCH_{2}S \xrightarrow{+}{} SCH_{2}CO_{2}H \xrightarrow{-H^{+}}{} HO_{2}CCH_{2}SSCH_{2} + CO_{2}$$
(24)

 CO_2H , may derive in a variety of ways, including protonloss from the corresponding radical-cation or concerted loss of OH⁻, CO₂, and H⁺ from the HO· adduct.⁴

It seems likely that the formation of $HO_2CCH-(NH_3^+)CH_2SO$ during the reaction of $^{+}NH_3$ with the disulphide cystine does not result from the hydration of

$$RSSR + "NH_3 \longrightarrow RSSR$$
(20)

$$R_{S}SR + H_{2}O \longrightarrow R_{S}SR + *NH_{4} \qquad (21)$$

$$OH$$

$$R_{SSR}^{\dagger} \longrightarrow RSO + H^{+} + RS^{-} \quad (22)$$

a first-formed radical-cation (though the latter may be formed) but rather that it derives from hydrolysis of an amino-adduct [reactions (20) and (21)] to give the analogous hydroxy-adduct which then decomposes via reaction (22).^{4,5}

Although the formation of ·CH₂SSCH₂CO₂H from re-

acid, the formation of radical-cations which in these cases decay via routes which do not lead to detectable radicals (in contrast, oxygenated radicals are produced from \cdot OH with these substrates, which suggests that adduct-formation, rather than cation-radical formation, is the preferred mode for hydroxyl).

It is interesting to note that although •CH₂SSCH₂CO₂H was the only disulphide-conjugated radical detected from the reaction of +'NH3 with the appropriate disulphide at substrate concentrations greater than ca. 10⁻⁴ mol dm⁻³, it could not be detected from the corresponding thiol once the concentration exceeded 10⁻³ mol dm⁻³; at high thiol concentrations (> 2×10^{-3} mol dm⁻³) the alternative disulphide-conjugated radical ·CH(CO₂H)SSCH₂CO₂H was detected instead (cf. the analogous behaviour of HSCHMeCO₂H). We interpret these findings in terms of two different key intermediates in the +•NH₃ oxidation leading to •CH₂SSCH₂CO₂H and ·CH(CO₂H)SSCH₂CO₂H, respectively. We believe that the former radical, derived from the cation-radical of the disulphide, undergoes ready 'repair' in the presence of an excess of thiol [reaction (25)].* The formation of the

$$HO_{2}CCH_{2}SSCH_{2} + HSCH_{2}CO_{2}H \longrightarrow HO_{2}CCH_{2}SSCH_{3} + \cdot SCH_{2}CO_{2}H$$
(25)
$$HO_{2}CCH_{2}SSCH_{2}CO_{2}H + HO_{2}CCH_{2}S \longrightarrow HO_{2}CCH_{2} - \overset{\circ}{S} - SCH_{2}CO_{2}H$$
(26)
$$SCH_{2}CO_{2}H + HO_{2}CCH_{2}S \longrightarrow HO_{2}CCH_{2} - \overset{\circ}{S} - SCH_{2}CO_{2}H$$
(26)

$$H_{1} \rightarrow H_{2} = H_{2$$

action of $^{+}NH_3$ with 2,2'-dithiodiethanoic acid could also be rationalized in terms of the mediation of a similar $^{+}NH_3$ adduct [with subsequent fragmentation by loss of NH_3 , H⁺, and CO₂, reaction (23) (cf. the behaviour of the corresponding sulphide 7)], an alternative mechanism involving the radical-cation [reaction (24)] seems likely to contribute to a significant extent. Thus we have found that Ce^{IV} oxidizes this substrate in a flow system under latter, which involves high thiol concentrations, is believed to involve a thiyl radical adduct of disulphide formed *in situ* [reactions (26) and (27)]. A reversible reaction analogous to reaction (26) has previously been

* The obervation that this radical is not detected at higher concentrations of $HO_2CCH_2SSCH_2CO_2H$ in the •OH reaction may well reflect the scavenging effect (both for •OH and •CH₂-SSCH₂CO₂H) of thiol produced by the decomposition of the •OH adduct to the sulphinyl radical [reaction (22)].

put forward ^{3b} to account for the high yields of symmetrical disulphides isolated during the radiolysis of mixed disulphides. An analogous mechanism of reaction probably accounts for our observation that $\cdot CH(CO_2H)SSCH_2CO_2H$ is also detected from the reaction of $\cdot OH$ with the appropriate thiol, but not disulphide.

Summary.—As we have found for the oxidation of thiols with $^{+}NH_3$, the reactions of disulphides with $^{+}NH_3$ bear some resemblance to the reactions of these

(8.3 cm³ dm⁻³, 6.7 mmol dm⁻³), stream (ii) contained hydroxylamine hydrochloride (40 g dm⁻³, *ca*. 0.6 mol dm⁻³), and the organic substrate was contained in stream (iii) (for concentrations employed, see text). All solutions were prepared from deoxygenated water and purged with nitrogen during use; in addition streams (i) and (ii) contained sufficient sulphuric acid to ensure that the combined solution had pH *ca*. 1.5. The hydroxyl radical was generated in the same system, in which stream (i) contained titanium(III) chloride (6.7 mmol dm⁻³) and concentrated sulphuric acid, stream (ii) contained 100-volume hydrogen

SCHEME Major reactions in the $^{+*}NH_3$ -RSH and $^{+*}NH_3$ -RSSR systems exemplified for $R = CH_2CO_2H^{a}$ ^a Denotes radicals directly detected in this system ($R = CH_2CO_2H$); Denotes radical trapped (by butenedioic acid) or radical-type detected for other alkyl groups R. ^b RSSR⁺⁺ may also be an oxidant in reactions thus labelled (see text).

substrates with the hydroxyl radical. One-electron transfer reactions appear to play a more important role for $^+$ 'NH₃: these include the oxidation of radicals (*e.g.* RSO or RS) and of reaction products (*e.g.* RSO₂H or HOSO₂⁻) as well as of the parent disulphides (where adduct formation also plays an important part, to an extent depending on the structure of the attached alkyl groups). Radical-cations formed in reaction of $^+$ 'NH₃ with disulphides may well themselves be instrumental in effecting one-electron oxidation of, *e.g.* RSO, and RSO₂H, *etc.*

Our findings are summarized in the Scheme, where the key processes have been illustrated for one specific thioldisulphide pair, namely HO_2CCH_2SH and HO_2CCH_2 -SSCH₂CO₂H.

EXPERIMENTAL

The e.s.r. spectrometer, details of spectrum measurement, simulation, and calibration, and the flow system have been described previously.⁷ In the studies of the ⁺ NH_3 system, stream (i) contained 12.5% titanium(III) chloride solution

peroxide (2.5 cm³ dm⁻³, 0.022 mol dm⁻³) and sulphuric acid, with the substrate in stream (iii). Reactions of cerium(IV) were investigated using a two-way flow system in which stream (i) contained cerium(IV) ammonium nitrate (6.7 g dm⁻³, 0.012 mol dm⁻³) and stream (ii) contained the substrate; both streams were acidified with hydrochloric acid to give pH *ca.* 1.5.

Titanium(III) chloride (12.5% w/v) was obtained from Fisons Ltd. and both hydroxylamine hydrochloride and hydrogen peroxide (100-volume) were supplied by B.D.H. Ltd. All substrates were commercial samples which were used without further purification except for the following which were distilled before use: 2-mercaptoethanoic acid, b.p. 106—110 °C at *ca*. 20 mmHg (lit.,¹⁸ 107—108 °C at 16 mmHg), 2-mercaptopropanoic acid, b.p. 103—105 °C at *ca*. 20 mmHg (lit.,¹⁹ 95—100 °C at 16 mmHg), 3-mercaptopropanoic acid, b.p. 113—114 °C at *ca*. 14 mmHg (lit.,¹⁹ 114—115.5 °C at 13 mmHg), and 2-mercaptoethanol, b.p. 56—58 °C at *ca*. 14 mmHg (lit.,²⁰ 55 °C at 13 mmHg).

We thank the S.R.C. for the award of a Studentship to P. R. M.

[9/488 Received, 26th March, 1979]

REFERENCES

- ¹ R. L. Willson, *Chem. and Ind.*, 1977, 183; G. Nucifora, B. Smaller, R. Remko, and E. C. Avery, *Radiation Res.*, 1972, 49, 96. ² G. Scott, 'Atmospheric Oxidation and Antioxidants,'
- S. Scott, Antospice Contaction and Antoshdants, Elsevier, London, 1965; G. Scott, Mechanisms of Reactions of Sulphur Compounds, 1969, 4, 99.
 ³ (a) B. Shapiro and L. Eldjarn, Radiation Res., 1955, 3, 255;
 (b) J. W. Purdie, Canad. J. Chem., 1971, 49, 725; T. C. Owen and C. Ellbarten Bedicing Bes. 1972.
- A. C. Wilbraham, Radiation Res., 1972, 50, 253.
 ⁴ M. Bonifačič, K. Schafer, H. Möckel, and K.-D. Asmus, J.
- ⁶ B. C. Gilbert, H. A. H. Laue, R. O. C. Norman, and R. C. Sealy, *J.C.S. Perkin II*, 1975, 892.
 ⁶ B. C. Gilbert and P. R. Marriott, *J.C.S. Perkin II*, 1977, 987.
- ⁷ B. C. Gilbert and P. R. Marriott, J.C.S. Perkin II, 1979, 1425.
- ⁸ R. O. C. Norman and P. M. Storey, J. Chem. Soc. (B), 1971, 1009.
- 9 H. Taniguchi, K. Fukui, S. Ohnishi, H. Hatano, H. Hasegawa, and T. Maruyama, J. Phys. Chem., 1968, 72, 1926.
- ¹⁰ J. Q. Adams, J. Amer. Chem. Soc., 1970, 92, 4535.

- ¹¹ M. C. R. Symons, *J. Amer. Chem. Soc.*, 1969, **91**, 5924. ¹² T. Kawamura, M. Ushio, T. Fujimoto, and T. Yonezawa, *J. Amer. Chem. Soc.*, 1971, **93**, 908.
- ¹³ H. Fischer, Ber. Bunsengesellschaft Phys. Chem., 1967, 71,
- 685. ¹⁴ M. Z. Hoffman and E. Hayon, J. Amer. Chem. Soc., 1972, 94,
- 7950. ¹⁵ B. C. Gilbert, R. O. C. Norman, and R. C. Sealy, *J.C.S. Perkin II*, 1975, 308.
- F. A. Cotton and G. Wilkinson, 'Advanced Inorganic Chemistry,' Interscience, New York, 3rd edn., 1972, 447.
 A. Albert and E. P. Serjeant, 'Ionization Constants of Acids
- and Bases. A Laboratory Manual,' Methuen, London, 1962,
- p. 151. ¹⁸ 'Dictionary of Organic Compounds,' Eyre and Spottiswoode, London, 4th edn., 1965, vol. 5, p. 3052. ¹⁹ 'Dictionary of Organic Compounds,' Eyre and Spottis-
- woode, London, 4th edn., 1965, vol. 4, p. 2076. ²⁰ 'Dictionary of Organic Compounds,' Eyre and Spottis-
- woode, London, 4th edn., 1965, vol. 3, p. 1686.